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Abstract

This text presents two interesting counterexamples in algebra concerning isomor-
phisms between quotient groups of isomorphic groups and commutative operators.

I first stumbled upon the example concerning isomorphisms during a course in Galois
theory. The second example about commutative operators was presented to me during a
course in finite-dimensional linear algebra.

Remark. In this text we denote isomorphisms and isomorphic groups by f : G ∼= H.

Example. Isomorphisms between quotient groups of isomorphic groups.
Assume that f : G1 → G2 is a group isomorphism. If H1 is a normal subgroup of G1,
then fH1 is a normal subgroup of G2 and we know that G1/H1

∼= G2/fH1.
Let us now again assume that G1

∼= G2, and that we have normal subgroups H1 of
G1 and H2 of G2 for which it holds that H1

∼= H2. Must it then necessarily hold that
G1/H1

∼= G2/H2? The answer is no. Let G1 = G2 = Z, and let H1 = 2Z and H2 = 3Z.
Now G1

∼= G2 and H1
∼= Z ∼= H2, but for the quotient groups we obtain

G1/H1 = Z/2Z ∼= Z2 6∼= Z3
∼= Z/3Z = G2/H2.

The problem here is that the isomorphism f from G1 and G2 is the identity function on
Z, but the isomorphism g from H1 and H2 is not the identity function, and is thus not a
restriction of f to H1. Thus we may not use the reasoning that we used in the beginning
of the example.

We also notice that even if G1 and G2 are finite groups, the result must not necessarily
hold. To see this, let G1 = G2 = Z2 ⊕ Z4 (the direct sum of Z2 and Z4), and let
H1 = {(0, 0), (1, 0)} and H2 = {(0, 0), (0, 2)}. Now again obviously it holds that G1

∼= G2,
and we also see that H1

∼= Z2
∼= H2.

To determine the quotient group G1/H1, we notice that for every x ∈ Z4 it holds that
(0, x) + H1 = (1, x) + H1, since (0, x) + (1, 0) = (1, x), and (1, 0) ∈ H1. Thus, it follows
that

G1/H1 = {g + H1 | g ∈ G}
= {(0, 0) + {(0, 0), (1, 0)}, (0, 1) + {(0, 0), (1, 0)},

(0, 2) + {(0, 0), (1, 0)}, (0, 3) + {(0, 0), (1, 0)}}
∼= Z4.
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On the other hand, we see that since (0, 2) ∈ H2, we know that

(0, 0) + H2 = (0, 2) + H2,

(1, 0) + H2 = (1, 2) + H2,

(1, 1) + H2 = (1, 3) + H2,

(0, 1) + H2 = (0, 3) + H2.

Thus every element in G2/H2 is its own inverse, since

((1, 0) + (1, 0)) + H2 = (0, 0) + H2,

((1, 1) + (1, 1)) + H2 = (0, 2) + H2 = (0, 0) + H2,

((0, 1) + (0, 1)) + H2 = (0, 2) + H2 = (0, 0) + H2.

This means that G2/H2
∼= Z2 ⊕ Z2, i.e. the Klein four-group, and since the Klein four-

group isn’t cyclic but Z4 is, we know that G1/H1 6∼= G2/H2.
This example shows that it’s important to not immediately consider isomorphic groups

to be the same in all ways, since we just showed that isomorphic groups can have a very
different relation to some outer structure. It’s also good to remember that when talking
about quotient groups, one should always exactly specify what normal subgroup is used,
since isomorphic subgroups don’t necessarily create isomorphic quotient groups. This
also means that quotient group notations like

Z2 ⊕ Z4

Z2

may easily be misunderstood, since the group Z2 ⊕ Z4 has more than one subgroup that
is isomorphic to Z2.

Example. Commutativity does not imply associativity.
In algebra, Abelian groups are a special case of groups, since in the usual definition of a
group, we only require that there is a neutral element, that every element has an inverse
and that the operator is associative. Since commutativity is often used only in the context
of groups, one might think that commutativity is in some way a stronger property than
associativity, i.e. that if an operator is commutative, it must also be associative. This is,
however, not the case. A simple example is the operator ⊕ : Q×Q→ Q, a⊕b = (a+b)/2.
This operator is obviously commutative, but it is not associative, since

(4⊕ 4)⊕ 8 =
4 + 4

2
⊕ 8 = 4⊕ 8 =

4 + 8

2
= 6, but

4⊕ (4⊕ 8) = 4⊕ 4 + 8

2
= 4⊕ 6 =

4 + 6

2
= 5.
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